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Agenda

• TPF Status Overview
• Architecture Concept Selection
• StarLight Status 
• Pre-Formulation Planning
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TPF Status- Overview

• Pre-Formulation Architecture Studies
– Received final reports, integrated models and technology 

roadmaps from all four study teams
– Architectures for further study and development have been 

selected
• Visible coronagraph and nulling IR interferometer (connected and

separated spacecraft
• Project Briefed HQ

– Contracts have been extended to complete comprehensive 
study report
• Draft Report in Review
• Study Teams will be dissolved at the end of the contracts

• Re-planning
– In the process of consolidating the Starlight effort with 

TPF
• The Starlight team primary focus will be to provide a ground 

demonstration of the technology required for the formation flying 
interferometer version of TPF

– Formalizing coordination with ESA’s DARWIN Mission
• Draft LOA in review at State Department
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TPF Status- Overview (Cont.)
• Technology

– Continuing to work on TPF Technology Plan including the Starlight 
activities 
• Plan due end of this FY

– Several major Starlight technology milestones achieved
– Mid-IR nulling testbeds in operation at JPL (in collaboration with 

Keck)
– Advanced Cryocooler Technology Development Program is underway

• Four teams are on contract and kickoff meetings have been held
– High Dynamic Range Imaging Testbed coming together at JPL
– Second major technology development procurement is in preparation 

for  2m class coronagraph mirror demonstrator 
– Industry led system level TPF technology procurement and 

university/small business targeted TPF R&D procurement planned for 
later this year with funding in early FY2003

• Science
– Completed, published and briefed HQ on Bio-Marker Studies
– Exo-Planet NRA selections made and contracts in place
– Released TPF related addition to ROSS NRA call
– Current SWG to be dissolved shortly; 

• Dear Colleague Letter will be sent out by HQ (7/1) for new Science Team
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TPF Architecture Selection Process
Pre-Phase A 

Architecture Studies

Preliminary 
Architecture Review

Final  
Architecture Review

>30 concepts

4 concepts
SWG & Tech. Panel
Recommendations

Architecture
Downselect

Visible Coronagraphs & IR Interferometers

Technology
Development (TRL5)

Concept
Studies

Science
Investigations

Final  
Architecture Decision

Phase 
A/B Start

Technology
Development (TRL6)

Phase A/B
Mission Studies

12/00

12/00

4/00

Industry/JPL 
Architecture Studies

6/996/97

12/01

4/02

10/01 9/05 10/02 9/059/05 10/01

Phase A/B Sci.
Investigations

Phase
C/D Start

1/06

10/06

10/06

10/06

10/06

9/10

9/10

9/1010/10

ARC/Lockheed 
Architecture Studies

1979

TOPS
Study

1992

ExNPS
Study

1996

3/02

IRIS
APOTS

AIT
OSI, POINTS

Big Observatories

Separated Spacecraft &
Structurally Connected
IR Interferometers

Separated Spacecraft
IR Interferometer



Dan Coulter
Chas Beichman
June 7, 2002

6

Architecture Selection Criteria
• Science capability

– Detect radiation from earth-like planets in the habitable zone
– Characterize orbital & physical properties
– Characterize atmospheres & search for bio-markers
– Provide broader understanding of all planetary system constituents (giant 

planets, debris disks, etc.)
– Provide advanced capability for astrophysics at minimal extra cost

• Technological maturity
– Understanding of the technology challenges
– Degree of difficulty with respect to the current state of the art and 

anticipated technology inheritance from prior missions (eg, NGST, 
SIRTF, SIM)

– Likelihood of meeting technology development goals by 2005 for the 
available budget

• Programmatic 
– Relative cost and risk 
– Relevance to future observatories providing ultra-high spatial resolution 

capability
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Key Science Requirements

• Sky coverage: 60%
• Mission duration:  5 years 
• Science program: 

– Primary objective is planet detection and characterization
– Secondary general astrophysics

• Planet Finding/Characterization:
– Nominal planet is defined as solid body with Earth radius at 1 AU, T=270 

K. Assume exo-zodiacal dust will be 1-10x the solar system level. 
– Number of stars (F5-K5) surveyed for planets (R=3, SNR=5): 150

• Astrophysics:
– Carry out program of high resolution imaging at minimal extra cost to the 

mission (reduced in scope relative to initial Architecture Study SOW)
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The Appearance of Distant Earths
• TPF-SWG (Des Marais et al.), Wolstencroft & Raven (2000) and 

NAI team (Meadows) have  addressed appearance of Earths
• Both mid-IR and near-IR/visible contain important diagnostics

2.0 Pm         1.0           0.67            0.5
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1Laser Trapped Mirror1Free Flying Occulter
8

1

1
3

1
1
3
1

4

#

Interferometers: Connected and 
Separated Spacecraft

100 m sparse aperture

Fresnel Coronagraph w/free 
flying elements

Large Aperture Coronagraph

TRW
Coronagraphs
Tethered Interferometers
Connected Interferometers
Fizeau Interferometer

Free Flying Interferometers

Lockheed Martin
Architecture Families

3Interferometers: Separated Spacecraft,  
& Connected Structure

3Hypertelescope: including Snapshot 
Imaging Array, Linear Array

7Coronagraphs

Boeing-SVS

2Hypertelescope

10Nulling Interferometers

2Occulting Screens

7Coronagraphs: including Spergel-Kasdin 
Pupil, Masking, Phase Mask

Ball
#Architecture Families

Architectures Evaluated in Phase 1 Study
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Architectures Evaluated in Phase 2 Study

Apodized Square Aperture 
(Boeing-SVS)

Variable Pupil Visible 
Coronagraph (Ball)

Structurally Connected IR 
Interferometer (LMMS)

Large Aperture IR 
Coronagraph (TRW)

Non-Redundant Linear Array 
Hypertelescope (Boeing-SVS)

Separated Spacecraft IR
Interferometer (Book)

Not formally part 
of  Phase 2 Study

Not formally part 
of  Phase 2 Study



Dan Coulter
Chas Beichman
June 7, 2002

11

Candidate Architecture Characteristics
Aperture/
Baseline

WFE /Optical
Path Error

Precision
Deployment

Other

Ball Spergel
Visible
Coronag raph

4x10m elliptical
monolith;
300 PM actuators;
apod ized pupil

-1 -5nm rms manuf.;
-1n m rms corrected;
0.3Å rms stability;

Telescop e
structure

Telescop e
rotates in L2 or
drift-away
orbit

Boeing-SVS ASA
Visible
Coronag raph

8x8m square
segmented;
TBD PM
actuators;
apod ized pupil

-3 -6nm rms manuf.;
-1n m corrected;
few Å rms stability;

Telescop e
structure and
primary mirror

Assembly in
orbit- then to
L2

TRW IR
Coronag raph

28m diameter
segmented; 13
PM actuators
per segment

500nm rms manuf.;
-30n m rms corrected
-1 µm rms stability

Telescop e
structure and
primary mirror

L2 orbit;
T=21K

LMMS
Structurally
Connected IR
Interferometer

9,21,40 m
baselines;
2x0.6m, 4x1 .7m,
4x3.5m co llectors
respectively

<100 nm rms WFE;
7.2nm,10.6n m,10.6n m
Optical path error
(for 9,21,40 m
respectively)

Truss fo r 21 &
40m versions

Baseline
rotates; L2
orbit; T=60K,
40K, 40K ( for
9,21,40 m
respe ctively)

“Book Concept”
Separated S/C
IRInterferometer

4x3.5m
collectors;
� 1km baseline

<100 nm rms WFE;
3nm OPE

none FF Baseline
rotates; L2
orbit; T=40K

Boeing-SVS IR
Non-Redundant
Linear Array

7x3m collectors;
100m baseline;

λ/200 rms WFE
(40nm@ 8µm );
72nm OPE

100m truss Baseline
rotates; LEO
assembly in
orbit then  to
L2; T=100K
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The Challenge of Angular Resolution

+

• Coronagraphs at >3λ/D
• Interferometers at > 1 λ/B

10 Pm, 28 m
Coronagraph
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Detect and Characterize Earth at 10 pc

0.6 d (H2O, CO2, O3)
R=20, SNR=5

2 hr (but min  6hr 
1 full rotation)

Separated Spacecraft 
Interferometer (Book)

0.8 d  (H2O, CO2, O3)
R=20, SNR=5

2 hr (but min 6hr 
1 full rotation)

LMSS Structurally 
Connected 
Interferometer  (40m) 

0.7 d (O2) 
R=70,SNR=5

< 10 pc

0.09 d (H2O)
R=24,SNR=5

< 10 pc

5.3 hr (incl. 9 
rotations)

BASD Shaped Pupil

0.8 d (O2) 
R=70,SNR=5

0.14 d (H2O)
R=24,SNR=5

0.86 hr (incl. 2 
rotations)

BASD Coronagraph

2.1 d (O3)
R=20,SNR=5

2.7 d (CO2)
R=10,SNR=5

2.5 hr (one half 
rotation)

Non-Redundant Linear 
Array (NRLA)

3.8 d (O3)
R=20,SNR=5

1 d (H2O)
R=20,SNR=5 

6.3 hr (incl. 2 
rotations)

Apodized Square 
Aperture (ASA)

Time to Detect 
Oxygen or 

Ozone

Time to Detect 
Planet’s

Atmosphere

Time to Detect 
Earth Twin 
(SNR=5)

Architecture
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Exo-Zodiacal Emission Affects Both Visible 
and IR
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Conclusions & Recommendations
from the TPF-SWG

• Both the IR and the visible regions of the spectrum offer critical information on 
planets, their atmospheres and bio-markers and both should be pursued.  
Technology, not science will likely be the driver to determine which will be 
pursued first.

• Differentiating between the architecture alternatives will require 
– scientific insight to refine planet detection requirements
– understanding of the real-world limitations of each architecture
– support of technology development for both until a clear choice between them is 

quantitatively apparent 
• Two classes of architectures are recommended for further study and technology 

development.
– Visible light coronagraphs/apodized aperture systems 
– IR nulling interferometer systems- both separated spacecraft & structurally 

connected versions
• Reduced scale systems (relative to the full TPF) should also be studied further

– Such systems (both architectures) are likely possible in the nearer-term
– Project should evaluate benefits in cost, schedule and technology risk reduction 

against reduced science capabilities
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Conclusions and Recommendations of 
TPF Technology Review Panel 

• TPF has two primary system architecture alternatives which 
should be pursued.  The nature of the risk is different for the two. 

• IR nulling interferometers
– Biggest technical risk is system complexity

• e.g.,  multi-level control, cryogenic operation,  
– Individual components and subsystems are less challenging than the system

• Draws heavily on SIM, SIRTF and NGST
– “Super large” (���P��VWUXFWXUDOO\�FRQQHFWHG�V\VWHPV�DUH�D�PDMRU�risk and 

are not recommended for further consideration
• However, ���P�VWUXFWXUHV�IRU�D�QHDU�WHUP�UHGXFHG�VFDOH�V\VWHP�DUe largely an 

engineering challenge, not a technology challenge
• Visible coronagraphs.

– Biggest technical risks are developing components/subsystems meeting 
requirements

• e.g., mirror manufacturing and �Å level WFE stability is extremely challenging
– System level operation is less challenging than the development and 

manufacture of the individual components/subsystems
• Direct imaging, functionally simple
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JPL Architecture Selection Decision

• Study and develop technology for:
– visible coronagraphs/apodized aperture systems

• up to 8-10m aperture systems to do the full TPF science 
• smaller aperture systems as potential nearer term missions

– IR nulling interferometer systems
• separated spacecraft version to do the full TPF science
• shorter baseline structurally connected IR interferometers as 

potential nearer term missions

• Evaluate reduced scale missions 
– determine cost, schedule and technology risk reduction
– determine capability to address TPF science questions
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Steps to Visible Light 
TPF

• Near term, direct  visible imaging 
with coronagraphs
– Simple coronagraphs in near IR with 

NGST for closest stars and for hot, 
young Jupiters in 5 µm window

– Advanced coronagraph/apodized 1-2 
apertures in visible (MIDEX, Discovery) 

• Æ 4 m (“TPF-Lite” offramp) 
• Æ 8~10 m apertures (TPF)

NGST coronagraphic image of a planet 
around Lalande 21185 (M2Vat 2.5pc) at 4.6 
µm

• Properties of Giant Planets
–Radius2*albedo(λ)*Φ(t)
–Atmospheric composition
–Rotation Æsurface/atmospheric variability

• Detection of nearest earths
• Workshop to address ground/space trade

–What could 30-50-100(!) m telescope do?
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Steps to a Mid-IR TPF
• A precursor mid-IR nulling 

interferometer with two 0.6 m 
telescopes on a 10 m boom could 
detect hot, young Jupiters out to > 50 
pc

• A larger precursor with 1-2 m mirrors 
on a 20 m boom could detect Jupiters 
within  25 pc and Earths within 8 pc

• Properties of Giant Planets
– Radius and temperature
– Atmospheric composition

• Orbital properties, radius and 
temperature of nearest Earths

• Extension of available technology 
– “TPF-Lite” Offramp =SIM- pico+ cryo
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StarLight Status- Overview
• New Guidelines

– StarLight received direction from NASA Code S on 3/1/02 to:
• Cease flight aspects of development
• Focus on ground demonstration of technologies that support the formation-

flying interferometer concept for TPF

• Redirection of FY02 Activities:
– FY02 Replan complete
– Workforce transition nearly complete – technologists retained, flight 

engineers successfully transitioned to other projects
– Ball contract revised consistent with new charter 
– Flight design archive nearly complete

• Technology Milestones proceeding well
– Formation Interferometer Testbed (fringe tracking)
– Metrology technologies
– AFF Prototype (Autonomous Formation Flying Sensor)
– Formation Flying algorithm development and simulation

• Draft technology implementation plan for FY03-FY05
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FIT = Formation 
Interferometer Testbed

• White light fringes tracking 
demonstrated 2/27/2002

– Instrument visibility 45% (matches 
the predicted value)

– All control loops operating

– Loops tracked for 20 min until 
deliberately broken (reqt was 10 sec)

Fringe Tracking Demonstrated in FIT
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FIT Closed Loop Control – Moving Collector

X
Y

Z

PI M-850 Hexapod

• StarLight and Metrology Loops closed
• Collector moved through representative 

spacecraft motions
• Loops remain locked at 1/3 pixel (1 arcsec) 

stability
• Further improvement to 1/5 pixel required for 

final fringe tracking milestone
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StarLight Planning

• New StarLight charter:
– Deliver by September 2005 a ground demonstration of formation-

flying interferometry technologies to influence the TPF architecture 
decision

• Ground demonstration of system technologies will include:
– A set of testbeds and system engineering
– Targeted component technology development
– Parallel development of interferometer point designs for TPF

• StarLight will:
– Submit a preliminary plan for peer review in June 2002
– Write a joint task plan with TPF and submit a final plan for FY03-

FY05
– Hold a FY02 year-end technology presentation of what’s been 

accomplished
– Merge with, and become a supporting task to, TPF on October 1 

2002 under a single UPN.



Dan Coulter
Chas Beichman
June 7, 2002

25

TPF Pre-Formulation Plans

• Over the period FY2002-FY2005, TPF will perform a 
series of activities focused on selection a final architecture 
no later than FY2006 to support a new start in FY2007

• The Project will pursue science, technology and system 
studies associated with the two selected architectures
– Science: $4M-$5M/year of competed  R&A and fellowships for 

TPF foundation science
– Technology: in-house efforts where JPL has special expertise; 

major competed outside system efforts; university/small business
R&D

– System studies: in house development of a range of point designs

• NASA will coordinate with ESA with the goal of 
achieving consensus on the best architecture for a joint 
planet finding mission
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Recommendations on Technology Development 
Approach- Per Technology Review Panel

• Recommend comprehensive set of laboratory breadboards 
and testbeds to validate system designs and models and to 
reveal unknowns

• Two-beam system level interferometer to demonstrate planet 
detectability and predictability from an end-to-end basis. 

• Large-scale formation-flying testbed, e.g., a flat-floor facility to 
simulate much of formation flying technology 

• Large coronagraph optical optical train to demonstrate Å-level WF 
quality and passive stability, mirror producibility and model validity. 

• Parallel development of integrated models. 
• Coordination with Precursor Science and Technology 

Missions
– “Eclipse”..or alternate concept….coronagraphy
– SIM….structural stability, in-space structurally connected interferometry, 
– NGST, SIRTF…cryogenic mirrors, mechanisms, structures, sunshades
– Keck, LBTI, et al….science and physical phenomena 

• Technology flight demonstrations only if laboratory 
testbeds cannot conclusively resolve uncertainties
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Prioritized TPF Technology Development Plan Content
IR Interferometers

Technology
Visible

Coronagraphs Core Separated
S/C

Structurally
Connected

Nulling 1
Cryocoo ler 1
Cryogen ic Opto-
Mechanics 2
High Cont rast Imag ing 1
Wavefront  Sensing &
Cont rol 1 3
Large Optics 1 3
Formation  Flying

1
Precision Deploy able
Structures 3 3
Low Thrust Propul sion

2 1
Metrology

2 2
System/Subsystem
Testbed s 1 1
Integrated Model ing

2 2
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System Level Technology 
• Planned testbeds and breadboards

– Interferometers
• Cryogenic IR nulling and beam train breadboards
• IR interferometer system testbed

– Metrology
– Structure

• Cryocoolers
• Separated spacecraft interferometer testbed (FIT+)
• Formation flying testbeds

– Formation control
– Formation sensing
– SPHERES

– Coronagraphs
• High contrast imaging testbed
• High actuator density deformable mirror breadboards
• Large visible optics
• Visible coronagraph system testbed

Planned out-of-house
Planned at JPL
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TPF Schedule 
01    02    03    04     05    06    07    08    09    10    11 12    13    14

Phase C/D
Phase B (2 yr)

PDRPhase A (2 yr) 
Select PrimePre-Phase A

Phase A Studies (2) 

00
Pre-Phase A

Architecture  
Studies (4)

Final Pre-Phase 
A Review 

Downselect   to Two 
Architecture Classes

Precursor Mission(s)  Development

Multi-Arch. 
Technology  

Development

Final  Arch.
Technology 
Development

Dual Arch. Technology
Development

IA
Select Baseline 
Architecture

Phase B Study (1) 

Final Phase A 
Review

Single Arch. 
Technology

Development

CDR

Operations

e.g. Kepler, “Eclipse”, SMART-2,3, ... Launches

JPL In-House Point DesignsIndustry Industry Industry

Ross NRA Awards

Studies

Technology 
Development

Science

Mission 
Phases

Precursor 
Missions

Exo-Planet 
NRA Awards



Dan Coulter
Chas Beichman
June 7, 2002

30

Conclusion
• Visible coronagraphs and IR nulling interferometers have been 

selected as candidate architectures for further study and development 
• The TPF Project will pursue science, technology and system studies 

associated with these architectures
– Science: significant competed outside R&A for TPF foundation 

science
– Technology: in-house efforts where JPL has special expertise; 

major competed outside efforts
– System studies: in house development of a range of point designs

• Annual reviews of science, technology, and point design progress will 
be held to judge readiness for selection of TPF architecture

• TPF will coordinate with the ESA DARWIN Study 
– Science Team participation
– Technical Interchange Meetings
– Management team coordination meetings
– Pre-formulation products

• Jointly agreed upon architecture decision
• Formulation phase technology development strategy
• Formulation phase Letter of Agreement
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Backup Charts
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Major Strengths & Weaknesses:
Visible Coronagraphs

Strengths
BALL
• High Q*§���/HVV�DIIHFWHG�E\�]RGLDFDO�

background
• Direct imaging; functionally simple; 

‘Rapid’ single mode data collection
• Ambient temperature
• Testable
• Large visible telescope capability for 

ancillary astrophysics
• BOEING-SVS
• Less demanding wavefront accuracy 

needed (at expense of Q)
• Direct imaging; functionally simple; 

‘Rapid’ single mode data collection
• Ambient temperature
• Testable
• Large visible telescope capability for 

ancillary astrophysics

Weaknesses
BALL
• 4x10m monolithic lightweight primary     

mirror required 
• Extraordinary wavefront accuracy needed

– Sub-Å WF quality for  multi-hour 
durations

• Requires high contrast starlight suppression
• Not extendable to future ultra-high resolution 

observatories 
BOEING-SVS
• Q<1 implies stringent stability requirements 

Requires high contrast starlight suppression 
• 8x8m square lightweight deployable 

segmented primary mirror
• Passive sub-Å WF quality for multi-hour 

durations
• Not extendable to future ultra-high resolution 

observatories

*The parameter ‘Q’ is the ratio of planet flux (light)  in the pixel to the background flux in the pixel. It is a measure of signal 
detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required 
background rejection. Wavefront stability during integration ~σ/Q,  30 nm/104~3 picometer
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Major Strengths & Weaknesses:
IR Coronagraph

Strengths
TRW Concept
• Relaxed PM and other optical tolerances 

relative to visible systems
• Direct imaging, functionally simple
• Classical coronagraph architecture, 

functionally well understood
• NGST linkage
• Large IR telescope capability for  

ancillary astrophysics

Weaknesses
TRW Concept
• Q<<1 implies stringent stability 

requirements on telescope  
• Poor resolution (λ/D 20X that of visible 

systems)
• 28m Segmented cryogenic primary mirror
• Complicated deployment
• Post-deployment mechanical stability 

concerns
• 21K operating temperature
• Poor overall testability
• Not easily extendable to future ultra-high 

resolution observatories

*The parameter ‘Q’ is the ratio of planet flux (light)  in the pixel to the background flux in the pixel. It is a measure of signal 
detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required 
background rejection. Wavefront stability during integration ~σ/Q,  30 nm/104~3 picometer
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Major Strengths & Weaknesses:
IR Interferometers (Structurally Connected)

Strengths
LMMS
• Modest size 1.7m  collector telescopes

– 3.5m optics for 40m version
– Use SIRTF or NGST technology 

for lightweight optics
• Exploits existing and continuing 

technology
– SIM, Palomar, Keck, MMT, 

LBTI, SIRTF, NGST
• Minimal component-level concerns
• Structurally connected design 

simplifies line of sight rotation 
mechanics relative to separated s/c 
version 

Weaknesses
LMMS
• Reduced science capability

– ���P�YHUVLRQ�UHTXLUHG�IRU�73)�SODQHW�
finding 

• Fixed baseline
– Eliminates capability to tune the 

baseline to maximize contrast ratio 
and/or spectral throughput

• 40K operating temperature
• Testing and verification complexity
• System and operational complexity
• Not extendable to future ultra-high 

resolution observatories
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Major Strengths & Weaknesses:
IR Interferometers (Separated S/C)

Strengths
“Book” Concept
• Maximized science capability

– Provides very high resolution imaging 
capability

• Variable baseline can optimize contrast 
ratio and/or spectral throughput

• Reconfigurable, highly resilient 
architecture

• Modest size (3.5m) collector telescopes
– Use SIRTF or NGST technology for 

lightweight optics
• Minimal component-level concerns
• Exploits existing and continuing 

technology
– SIM, Palomar, Keck, MMT, LBTI, 

SIRTF, NGST 
• Extendable to future ultra-high 

resolution observatories

Weaknesses
“Book” Concept
• Requires precision formation flying 

– including line of sight rotation 
– Requires precision spacecraft-to spacecraft 

metrology and communications 
• 40K operating temperature
• Weight and volume may require 

additional launches
• Testing and verification complexity 
• System and operational complexity
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Major Strengths & Weaknesses:
Hyper-Telescope

Strengths
Boeing-SVS Concept
• Much less sensitive to exo-zodiacal light 

than  Bracewell interferometry (Q§��
• Densified pupil eliminates "fixed  

baseline problem" of Bracewell-type  
interferometers 

• Imaging capability directly applicable   
for high resolution astrophysics

• Precursor to future ultra-high resolution 
observatories

Weaknesses
Boeing-SVS Concept
l Complex optical design, not as mature as 

the other options and all issues may not 
have been identified 

l Long (100m) connecting structure
l Multiple launches required (3 estimated)
l In-space assembly either by astronauts or 

robotics 
– Transfer to operational orbit

l Tight beam alignment tolerances and/or 
controls

l Testing and verification complexity
l System complexity
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